
International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 285
Volume 2, Issue 2, April 2011

A Software Product Line Methodology for

Development of E-Learning System
Faheem Ahmed

1
, Imran A. Zualkernan

2

1
College of Information Technology, UAE University, Al Ain, UAE

2
Computer Science and Engineering, American University of Sharjah, Sharjah, UAE

f.ahmed@uaeu.ac.ae, izualkernan@aus.edu

Abstract: Software product line has become one of the most

promising software practices with the potential to

substantially increase the development productivity in the

software industry. Learning objects can be defined along the

three dimensions of pedagogy, technology and the domain.

We put forward a methodology to develop a software

product line of E-Learning systems. This model identifies

and elaborates the essential phases and activities. The model

is divided into two phases, Domain Engineering and

Application Engineering. Domain engineering phase

consists of two views, Product Line Infrastructure View and

E-Learning Analysis View. Application Engineering phase

has Product Line Application View and Core Assets

Development View. Various activities related to each view

are identified to enhance the reuse development process for

E-Learning software product line. The methodology

demonstrates the use of explicit variability definition in a

learning object at various levels of the model including Site,

Structure, Skin, Services, Space Plan and Stuff. The

methodology is validated against a commercial e-learning

course in Six Sigma.

1. Introduction

Software product line aims at curtailing the concept

of “reinventing the wheel” in software development. It

accentuates on consolidating the software assets in

prescribed and a systematic way rather than an ad hoc

and need to know basis. Software product line provides

likelihood to accommodate the changing needs of the

customers into new products by competently using

software assets and allows capturing market segments

for profitable business. Definition of software product

line terminology has been widely explored by

researchers [1, 2, 3, 4] to narrate an in-depth

philosophy behind this approach. Synonyms of

software product line terminology have also been

widely used in Europe, for example “Product

Families”, “Product Population” and “System

Families” etc. [5, 6]. The economic potentials of

software product line have long been recognized in

software industry [5, 7]. Software product line

engineering is gaining popularity in the software

industry. Some of the potential benefits of this

approach include cost reduction, improvement in

quality and a decrease in product development time.

Software organizations are improving business

operations such as technology, administration, and

product development process in order to capture a

major portion of the market share to be profitable. One

of their major concerns is the effective utilization of

software assets, thus reducing considerably the

development time and cost of software products. Many

organizations that deal in wide areas of operation, from

consumer electronics, telecommunications, and

avionics to information technology, are using software

product lines practice, because it deals with effective

utilization of software assets. Software product lines

are promising, with the potential to substantially

increase the productivity of the software development

process and emerging as an attractive phenomenon

within many organizations that deal with the software

development. Several studies have been done, COPA

[8], FAST [9], FORM [10], KobrA [11] and PuLSE

[12] etc. to elaborate the software product line process.

Independent work carried out in software reusability,

object-oriented, and software architecture has reached a

point at which many activities can be integrated to

yield a new coherent approach to product-line

integration. Traditional software life-cycle models do

not encourage reusability within their phases. A

product line can be built around E-Learning system by

analyzing the products to determine the common and

variable features. The product structure and

implementation strategy around E-Learning system

prepares a platform for several products, which aligns

with the concept of software product line.

Recently, software development trends have caused

single product development to evolve into “software

product line architecture” (SPLA) which integrates

lines of resulting products. The main objective of

software product line is to reuse the architecture for

successive product development. Clements [13] defines

the term “software product line” as a set of software

intensive systems sharing a common, managed set of

features that satisfy the specific needs of a particular

market segment and are developed from a common set

mailto:f.ahmed@uaeu.ac.ae
mailto:izualkernan@aus.edu

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 286
Volume 2, Issue 2, April 2011

of core assets in a prescribed way.” The software

product line is receiving an increasing amount of

attention from software development organizations

because of the promising results in cost reduction,

quality improvements and reduced delivery time.

Clement et al. [14] report that SPL engineering is a

growing software engineering sub-discipline and many

organizations, including Philips


, Hewlett-Packard


,

Nokia


, Raytheon


, and Cummins


, are using it to

achieve extraordinary gains in productivity,

development time, and product quality.

Since the acceptance of object-oriented paradigm in

the early 1980’s, concepts of software architectures

have evolved significantly. As Garlan and Perry [15]

point out, traditionally software architecture includes

the structure of the components of a program or

system, their interrelationships, and the principles and

guidelines governing their design and evolution.

However, more recently, software architecture is being

restructured towards a SPLA, where the focus is not on

single product development but rather on multiple

product development. In a SPLA, all of the products

share the same architecture. Pronk [16] defines SPLA

as a system of reuse in which the same software is

recycled for an entire class of products, with only

minimal variations to support the diversity of

individual product family members. According to

Jazayeri et al. [17], SPLA defines the concepts,

structures and textures necessary to achieve variation in

the features of diverse products while ensuring that the

products share the maximum amount of parts in the

implementation. Mika and Tommi [18] point out that

SPLA can be produced in three different ways: from

scratch, from an existing product group or from a

single product. Hence, software product line

architecture is an effective way to minimize risks and to

take advantage of opportunities such as complex

customer requirements, business constraints and

technology.

 Digital learning objects are a complex

amalgamation of learning content, pedagogy and

technology and represent the building blocks of any

online course. While there are many views on what a

learning object is [19] [20], in practice, a learning

object typically contains learning objectives, reusable

information objects and formative and/or summative

assessments [21]. The reusable information objects

can range from images, text or videos to games or

simulations. Assessment objects, on the other hand,

range from simple multiple-choice questions to

adaptive testing techniques. Much like earlier days of

object-oriented design, most discussions on learning

objects have revolved around micro-level reuse; how to

re-use a learning object in a different learning context.

In the mean time, significant success has been achieved

in macro-level reuse in the context of traditional object-

oriented design. In specific, one promising area for

macro-level re-use has been that of product-line

engineering [13]. The commonality and variability

characteristics of digital learning objects makes a clear

case of software product line architecture development,

which can be used to come up with multiple product

development based on business case engineering.

1.1 Research Motivations

Digital learning objects are composite structure of

learning content, pedagogy and technology. The use of

the Internet further accelerates the popularity and

significance of learning objects design and

implementation at an unprecedented rate of growth.

Conceptually different products using digital learning

objects share commonality and variability up to certain

extend. Software product line provides an opportunity

to explicitly identify commonality and variability first

at the architecture level and later at the implementation.

Figure 1 shows the systematic view of generic product

line architecture.

Figure 1: Software Product Line Architecture: A

Structural View

A well-established requirements management

activity for the software product line assists in

understanding the scope and boundaries of the products

to be developed and it helps in establishing the

underlying core architecture features in terms of

functionalities and their structure. Product line

requirements deal with features or functionalities

common to all the products belonging to that family.

Product line requirements are composed of a constant

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 287
Volume 2, Issue 2, April 2011

and a variable part. The constant part comes from

product line requirements and deals with features

common to all the products belonging to the family.

The variable part represents those functionalities that

can be changed to differentiate one product from

another. This activity defines the variable part of the

product requirement. The product commonality

analysis provides a set of features that are common to

all products, whereas product variability analysis

identify explicit variation points where we can

introduce changes to develop new set of products.

Since the popularity of both the use of digital learning

objects and software product line, there is a need to

establish a process methodology for the learning

objects to make use of software product line in order to

get benefits of the product line approach in terms of

cost, quality and reduction of development time. The

objective of this study is to present a methodology to

establish a software product line for E-learning system.

The methodology will concentrates in identifying core

architecture features of digital learning objects along

with explicit definition of commonality and variability.

Given the phenomenal success and popularity of

both software product line and E-learning system’s

development paradigms, we assert that a process

guidance model can help to identify and understand the

activities and tasks that need to be undertaken in order

to successfully develop a software product line for E-

learning system. In order to address this gap, we

propose a model of developing software product line

based on E-learning by incorporating several concepts

that characterizing various aspects of software product

line and learning objects. The proposed model

identifies the interdependency of various activities of

software product line and learning objects and

describes different ways of exploiting the relationships

between those activities in order to guide the process of

developing learning objects based software product

line. It should be clarified that such a process guidance

model will not aim to replace existing software product

line development and maintenance models and

frameworks such as reported in [1] [22]. Rather, this

model complements those frameworks for establishing

and maintaining software product line in E-Learning

context. Since Software architecture and its related

Figure 2: The Software Product Line Development Methodology for E-Learning System

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 288
Volume 2, Issue 2, April 2011

issues are considered of paramount importance in the

successful development and maintenance of a software

product line [1] [23], this model emphasises the vital

role of software architecture in developing E-learning

based software product line.

2. Software Product Line

Methodology for E-Learning System

The methodology shown in Figure 2 describes a

complete life cycle for a software product line

development for E-Learning system starting from

conceptualization, initiation and development. This

process methodology focuses on and encourages

software reuse from repository within an application

domain. The process methodology has two phases,

Domain Engineering and Application Engineering.

The Domain Engineering consists of two views,

Product Line Infrastructure View and E-Learning

Analysis View. Similarly the Application Engineering

has two views, Product Line Application View and

Core Assets Development View. Each view describes

the development process with respect to its perspective

and identifies the core activities to be performed in that

view.

2.1 Domain Engineering

The Domain Engineering phase of the proposed

methodology helps in establishing an infrastructure for

software product line and constructs a core assets

repository for product development. During the

Domain Engineering phase, we initiate Product Line

Infrastructure View and E-Learning Analysis View.

The iterations in the activities of both views provide

feedback to one another. The aim is to generate a core

assets repository and a base line software product line

architecture, which fulfills the product line

requirements and meets the production constraints. In

Domain Engineering phase we concentrate on the “E-

Learning” and carry out activities in both the views.

2.1.1 Product Line Infrastructure View

Product Line Infrastructure View involves the

activities related to conceptualization and initiation of

software product line within an organization. This view

performs activities that establish an infrastructure for a

software product line. The Product Line Infrastructure

View constantly provides feedback to E-Learning

Analysis View for effective definition, identification,

evaluation, selection and catalog/storage of E-learning

content management. Software product line scope

definition activity iteratively provides feedback to E-

learning contents’ definition and identification activity

in E-Learning Analysis View. This way it ensures that

all the material for content management are consistent

with the scope of product line. Product line

requirements deal with features or functionalities

common to all the products belonging to that family.

The requirement engineering for product line gives

feedback to analyzing learning object activity in the E-

Learning Analysis View to generate a candidate list of

learning object’s presentation that meets the product

line requirements. The identification of business cases

helps in evaluating identified learning objects in E-

Learning Analysis View in order to meet the production

criteria and the product requirements.

2.1.2 E-Learning Analysis View

E-Learning Analysis View is responsible for

building up a core assets repository for the e-learning

based software product line and provides base line

information for the software product line architecture

by specifically dealing with commonality and

variability management. It communicates with Product

Line Infrastructure View to generate content

management. Initially the E-Learning Analysis

Engineer identifies potential contents from the software

product line requirements and scope. The definition

and identification process yields a number of potential

contents that can be used in the development of various

products in a software product line. Those contents

need to be evaluated at the individual level as well as at

the product line level before they are selected for use in

a software product line development. The selected

contents are cataloged and stored in the repository with

enough information so that they can be easily traced

and retrieved as and when required for assembly. The

E-Learning Analysis View uses support methodology to

analyze, evaluate and select the contents. In this paper

we are using the ED
2
 Model [24] [25] for analysis,

evaluation and selection of the contents discussed in

detail in later part of this paper. The support

methodology to analyze, evaluate and selection

provides foundations for the commonality and

variability selections in the software product line

architecture.

2.2 Application Engineering

In the Application Engineering phase of the

proposed methodology shown in Figure 2, actual

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 289
Volume 2, Issue 2, April 2011

products are developed using software product line

architecture and core assets repository. In this phase,

activities of the Product Line Application View interact

with the activities of the Core Assets Development

View to produce required products. The application

engineering phase provides feedback to domain

engineering phase through business case evaluation to

accommodate changing needs of the product line.

2.2.1 Product Line Application View

Product Line Application View interacts with

Product Line Infrastructure View to identify potential

business cases to capture market segment. The Product

Line Application View generates the product

requirements of the potential business case and

provides feedback to E-Learning Analysis View to find

out contents to be used in the product development.

Product requirements are composed of a constant and a

variable part. The constant part comes from product

line requirements in the Product Line Infrastructure

View and deals with features common to all the

products belonging to the family. The variable part

represents those functionalities that can be changed to

differentiate one product from another. This activity

defines the variable part of the product requirement.

The assembly activity involves the development of

product. The product requirements guide the assembly

process to get feedback from the query activity of Core

Assets Development View to find out those potential

contents suitable to be assembled in order to produce

the product. In product testing and evaluation, products

developed from software product line are tested to

analyze whether they meet the product line testing and

evaluation criteria or not. Business case evaluation

compares the proposed business case strategy with the

outcome of the development and deployment process

of products.

2.2.2 Core Assets Development View

Core Assets Development View is responsible for

providing required components from core assets

repository for developing products. Core Assets

Development View interacts with Product Line

Application View to receive product. In the query

activity of the Core Assets Development View,

components are searched from the core assets

repository in order to develop the product. A well-

catalogue core assets repository reduces the efforts to

trace the suitable components for assembly. The

product requirements serve as an input to the query

activity, and continuously traversing core assets

repository yields the required components, exactly

matched, partially matched or not matched. The

components, after adaptation, generate versions, which

are documented in this activity. A comprehensive

version management and dependency link strategy for

components and products in the software product line

engineering provides us with vital information about

components and products having a relationship of

composition and utilization. A software product line

develops an initial core assets repository in the Domain

Engineering phase. As a product line gets matured in

its lifecycle, new core assets or even new versions of

existing core assets are produced, which must be added

to the core assets repository so that they can be reused

in later products. The core assets repository is dynamic

and continues increasing its size with the addition of

new core assets.

2.3 Software Product Line Architecture

The proposed model emphasizes the importance of

developing a software product line architecture based

on e-learning product. The junction of Domain

Engineering phase and Application Engineering phase

produces a suitable product line architecture based on

existing e-learning components. Overall Software

Product Line Architecture can be produced in three

different ways; it can be developed from scratch, it can

be based on the existing product group, or it can be

built based on a single existing product [7]. The

proposed methodology emphasizes the approach of

developing Software Product Line Architecture based

on a single existing product. The junction of Domain

Engineering phase and Application Engineering phase

produces the Software Product Line Architecture based

on the first product developed. The Domain

Engineering phase provides product line requirements.

The Application Engineering phase accommodates

those requirements along with product specific

requirements to establish the Software Product Line

Architecture. The Software Product Line Architecture

reflects the commonalities among the products and

variation points where products differ from each other.

All the resulting products from the product line share

this common architecture. The iterative approach of

methodology refines the Software Product Line

Architecture after successive development of products.

3. The ED

2
 Model: E-Learning Analysis View

Support Activity

 The ED

2
 model for analyzing learning objects is

presented in [24] [25]. The ED
2

model presents a

comprehensive framework for thinking about

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 290
Volume 2, Issue 2, April 2011

variability and change in any learning object. The

model has two dimensions. The first dimension views

variability in terms of pedagogy, technology and

domain of learning. The second dimension looks at

variability from the perspective of architectural layers

of a learning object. The first dimension of the ED
2

model deals with the three dimensions of pedagogy,

technology and the domain. The first source of

variability is the domain of learning where different

types and levels of knowledge may be included in a

learning object. Similarly, the second source of

variability is the technological basis of a learning

object; one may decide to use an HTML-based learning

object as opposed to a Flash-based one, for example.

Finally, the pedagogy underlying the learning object

can vary from tell-and-test to a socio-constructivist

framework emphasizing the social nature of learning.

In many cases, product families are established on top

of a successful pilot product [26].

The second dimension of the ED

2
 model deals with

layers of change within a learning object. This

dimension was originally conceived to think about

layers of change in the field of architecture and later

applied to learning objects [27] [28]. Brand [27]

contends that a building can be viewed to consist of

multiple layers that slide along each other. Each layer

is designed to vary on a different time-scale. The layer

that varies at the slowest speed is called the Site. This

layer represents the physical location of a building and

is consequently the most stable. The next level of

variability is represented by the Structure of a building.

The Structure may consist of the walls and roof of the

building. In buildings, structures can last from 30 to

300 years and are hence less stable. Skin layer

represents the exterior of a building and typically

changes over a period of 20 years or so. The

infrastructure inside a building represents the Services

layers. This may include lighting, air-conditioning and

plumbing etc. Services typically change over a life-

span of decades. The Space Plan layer consists of the

internal walls and the layout of the building. This layer

can be changed every few years or so. Finally, the Stuff

layer represents what is inside a building. For example,

furniture represents one type of stuff. Stuff can be

changed on a weekly or monthly basis. For a learning

object, ED
2
 combines the two dimensions as described

below.

3.1 Site

Technologically, Site represents a choice of the

lowest virtual machine being used to deploy a learning

object. For example, one could choose Windows

operating system, Java virtual machine or Adobe Flash

virtual machine as the Site. Pedagogically, Site

represents choosing an epistemological orientation

towards learning. For example, one could choose an

instructivist or constructivist pedagogy. From the

domain of learning, Site represents choosing what

constitute fundamental and immutable principles of a

domain; homeopathic verses allopathic, for example.

3.2 Structure

Structure from a technology perspective, involves

choosing learning design architecture like SCORM

[29] or IMS-LD [30]. Pedagogically, the choice is

about the nature of learning design; problem-based

learning verses informal learning, for example. From a

domain perspective, the choice is about embedding a

particular domain ontology that emphasizes only

particular views of a domain [31].

3.3 Services

Choices in technology-oriented services in a

learning object may include authentication, login,

tracking, archiving, and book-marking. Choice in

pedagogical services, on the other hand, is represented

by a level of understanding being delivered by a

learning object. For example, one may use Bloom’s

taxonomy [32] to specify that a learning object delivers

a “recall” level of understanding as opposed to

“analysis.” Domain services provide choices in

learning objectives; what is to be learned in a learning

object, for example.

3.4 Space Plan

Technologically, Space Plan of a learning object

represents choices of personalization and

customization. For example, the linear sequencing in

SCORM [29] supports a flexible Space Plan.

Pedagogically, the Space Plan represents a choice on

the degree of adaptive-ness of the learning design; does

the learning object use learning styles and preferences

to determine learning paths for individual learners?

Domain-wise, a Space Plan represents choices

regarding multiple types (or roles) of learners; is the

learning object designed for a technician, an engineer

or both?

3.5 Skin

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 291
Volume 2, Issue 2, April 2011

Technologically, Skin of a learning object

represents choices in user-interface technologies;

HTML, DHTML, XUP or SVG, for example.

Pedagogically, Skin represents the choice of a learning

template. For example, Cisco’s methodology [21]

specifies that teaching a concept requires a definition,

an example and a non-example. Domain-wise, Skin

represents choices in presentation styles and colors;

each domain has its own presentation norms.

3.6 Stuff

Technologically, Stuff represents choice or

selection of specific assets [29]; text, PDF files, Flash

movies and Java scripts, for example. Pedagogically,

Stuff represents choices about including specific

instances of pedagogical primitives like objectives,

topics, lessons, assessments, games, simulations, and

activities. Domain-wise, Stuff represents choices in

which of the specific definitions, concepts, processes,

and principles to include in a specific learning object.

4. Application of the Methodology: A

Case Study

We applied the proposed methodology software

product line development to creating learning objects

for the Six Sigma quality methodology [33]. As a part

of implementing Six Sigma within an organization, the

Six Sigma training needs to be delivered at various

levels for various stakeholders. The level of training

can vary from yellow-belt training to black-belt or

master black-belt training. Intermediate levels of green

belt and orange-belt have also been introduced. In

addition to various levels of training, the Six sigma

methodology has various variants like DMAIC (Define,

Measure, Analyze, Implement and Control) or DFSS

(Design for Six Sigma), for example. These variants

can be further customized; some companies may

choose to combine the Define step with Measure to just

include MAIC. Another source of variability is the

diverse set of conceptual and statistical tools that can

be optionally used to implement this methodology; for

example [34] lists about one hundred tools. The high

variability in various aspects of a Six Sigma course

makes it a good candidate for a SPL. A business cases

for this product line is clearly justified by the need for

various specialized versions of yellow belt, green-belt

and black-belt courses in Six Sigma.

In the Domain Engineering we perform the activities

of the Product Line Infrastructure View and E-

Learning Analysis View to establish product line

architecture. This can be achieved by highlighting the

commonality and variability features in the products.

The scope definition of product line yields that a six

sigma course learning system that supports various

courses and can be accessible on the WWW for

delivery, simulation, discussion, and examination

purposes. In order to carry out the task of product line

requirements engineering based on the business case of

“six sigma course product line” the activities in the E-

Learning Analysis View starts analyzing the contents

and the way the contents are presentable. The

Analyzing Learning Object activities in the E-Learning

Analysis View help in establishing the Figure 3. Figure

3 shows a simplified feature model the six sigma

course learning object in terms of ED
2
 model. The first

variability is at the top level which is the training levels

of six sigma courses of yellow, black, orange and green

levels. The commonality exists at the six level of ED
2

model which are Site, Services, Structure, Space plan,

Skin and Stuff. In other words, any Six Sigma course

must include (and choose) aspects from each of these

six. Commonality management in software product line

architecture deals with all product aspects that are

common across all the various ED
2
’s categories. The

structure of ED
2
 dictates that commonality should be

high (less variability) at the lower layers (like the Site)

and low (high variability) in the higher layers (like the

Stuff). Commonality analysis ensures that the

selections made for each layer of commonality

according to the ED
2
 model are mutually consistent.

For example, since a pure Flash framework was fixed

for the Site, it is consistent with the Stuff being

constrained to use common Flash buttons; a use of

Windows buttons for the Stuff, would obviously be

inconsistent. Detailed example of commonality among

successive products of six sigma learning objects are

shown in Table 1 which is a result of the product line

requirements engineering in the Product Line

Infrastructure View.

The product requirement engineering activity in

Product Line Application View provides information

about as opposed to commonality; variability explicitly

models what can be changed. It highlights in the core

architecture where we can introduce changes to come

up with new products based on the business case.

Again, ED
2
 provides a structured approach to

identifying variability. The Figure 2 clearly highlights

variations in features in terms of ED
2
 model. For

example, in case of Structure some products may use

SCORM and others may use LD. Whereas in case of

Site, some product may use HTML, DHTML, or XUP.

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 292
Volume 2, Issue 2, April 2011

Like commonality analysis, variability analysis also

needs to ensure that there are no contradictions. For

example, the variability in the Services layer (no audio)

is consistent with the Flash engine’s capabilities (to

skip audio for a Tab) at the Site layer. Some more

examples of variability analysis are shown in Table 2.

During Application Engineering phase product s

are developed using the product line architecture. The

Figure 4 and 5 show screen shots for a yellow-belt and

orange-belt modules as a part of two successive

products that are developed from the Six Sigma courses

software product line. These two products consist of

sets of Adobe Flash modules that constitute each

course. The commonality is present in all the six

factors of ED
2
 model including Site, Structure,

Services, Space plan, Skin and Stuff. Both courses use

the same Adobe Flash Engine that interacts with a

SCORM-based Learning Management System using

and AICC interface to support authentication, tracking

and book-marking services. Both products have the

same look and feel in term of the various buttons and

menus on the screen. Both products support pages and

sub-pages and an audio interface. The variability arises

in the depth of the presentation content. As Figure 3

shows, the yellow-belt course is mostly descriptive and

introduced Six Sigma at a basic level. The orange-belt

course, on the other hand, goes into the details of

technical analyses like gage analysis. There is

variability from a presentation perspective as well. For

example, in Figures 4 and 5, the yellow belt example

shows a simple table while, in the orange-belt example,

the three graphs can be selected one at a time by the

user by clicking on it. There is also wide variability in

the two courses with respect to the pedagogy. While

the yellow-belt course relies primarily on tell and test

(knowledge level, in terms of Bloom’s taxonomy), the

orange-belt course uses scenario-based learning as

well. For example, a culturally relevant example of

how to select a mobile phone is used where the user

can choose a particular mobile phone and try to

understand the reasons behind their selection by using a

factorial design approach.

Table 1: Commonality Identification Examples

Dimension Commonality Identification

Site Use the Adobe Flash-based engine for all

products. This engine defines a common

virtual layer for all the products. The

engine needs to support interface to a

Learning Management System. In

addition, the product will use a traditional

teacher-centric pedagogy.

Structure All products will contain modules where

each module will present objectives,

followed by a mix of information and

assessment items, followed by a

conclusion. Each product will support

multiple learning styles by including

images, text and audio. Each product

will be structured to include sub-pages in

the form of Tabs. Traditional Six Sigma

methodology will be used (excluding

Lean concepts).

Figure 3: Feature Model of Six Sigma Course Product

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 293
Volume 2, Issue 2, April 2011

Services All products will have login, book-

marking and audio services. In addition,

all products will have a help facility.

Space

Plan

All modules will have pages and each

page will have tabs for sub-items within a

page.

Skin All products will carry the same broiler

plate with the company’s logo. All

products will have a forward-backwards

button, an audio panel including on/off,

pause and repeat buttons, a drop-down

menu to access various pages of the

product and a panel showing where the

learner is (sub-page number) with respect

to the complete module.

Stuff All products will use common Flash

buttons for forward and backwards, drop-

down menus and Tab objects.

Table 2: Variability Identification Examples

Dimension Variability Identification

Site Arbitrary Flash movies can be embedded

within the generalized Adobe Flash

engine. The pedagogy can be changed to

emphasize problem-based learning in a

social context.

Structure The content inside each Tab in a product

can be an arbitrary image, text or another

Flash movie. The depth of content

presentation can be varied for yellow to

black-belt.

Services Audio can be skipped for some tabs.

Similarly, tracking is optional. The

learning objectives are different for

yellow or black-belt.

Space

Plan

The placement of text, images, and

movies within a Tab can be varied. In

other words, different configuration of

text, images and movies can be used.

The order of modules and sub-pages to

include will depend on whether yellow or

black-belt training is being delivered.

Skin Colors and look & feel can be changed.

Stuff All the content including text, images and

specific audio is variable. The specific

stuff to include will depend on which of

the various levels of training is being

imparted.

Figure 4: Screen shot of one module in a yellow-belt

course
Source: w.knowledgeplatform.com

Figure 5: Screen shot of one module in a black-belt

Course
Source: www.knowledgeplatform.com

5. Conclusion

Design and development of digital learning objects

is gaining popularity due to significantly large increase

in online-learning. Software products line engineering

curtails the development time and further avoids

reinventing the wheel in software development. The

objective of this study was to investigate the use of

product line approach in developing digital learning

objects and put forward a methodology. The proposed

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 294
Volume 2, Issue 2, April 2011

methodology highlights various activities of software

product line and E-Learning system development. The

model integrates the concept of software product line

and learning object to come up with a prescribed way

of establishing a software product line for E-Learning

system capable of producing multiple products within

an application domain. In order to validate the model,

we developed a software product line for six sigma

application domain, which reveals that productivity in

terms of cost, time and quality would be increased if

we follow the proposed methodology. Additionally, the

methodology provides an efficient way of integrating

the approaches of software product line and E-learning

system development process.

References

[1] Clement P. and Northrop L., Software Product

Lines: Practices and Pattern, Addison Wesley,

2001.

[2] M.L., Implementing Product-Line Features

with Component Reuse, Proceedings of 6th

International Conference on Software Reuse:

Advances in Software Reusability, pp. 137-

152, Lecture Notes in Computer Science,

Springer Verlag, 2000.

[3] Griss D. M. Weiss and Lai C. T., Software

Product-Line Engineering: A Family-Based

Software Development Approach, Addison-

Wesley, 1999.

[4] Griss M.L., Product-Line Architectures, G. T.

Heineman and W. L Councill (Eds.)

Component-Based Software Engineering, pp.

405-419, Addison-Wesley, 2001.

[5] Linden F. van der, Software Product Families

in Europe: The Esaps & Café Projects,

IEEE Software, Vol. 19, No. 4, pp. 41-49,

2002.

[6] Ommering R.V. (2000) Beyond Product

Families: Building a Product Population,

Proceedings of the Conference on Software

Architectures for Product Families, Lecture

Notes in Computer Science, Springer - Verlag,

pp.187-198.

[7] Buckle G.; Clements P.; McGregor J.D.;

Muthig D. and Schmid K., Calculating ROI

for Software Product Lines, IEEE Software,

Vol. 21, No. 3, pp. 23-31, 2004.

[8] P. America, H. Obbink, J. Muller, and R. van

Ommering, "COPA: A Component-Oriented

Platform Architecting Method for Families of

Software Intensive Electronic Products,".

Denver, Colorado: The First Conference on

Software Product Line Engineering, 2000.

[9] David M. Weiss and Chi Tau Robert Lai.

Software Product-Line Engineering: A

Family-Based Software Development Process.

Addison-Wesley, 1999.

[10] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin,

and M. Huh, "FORM: A Feature-Oriented

Reuse Method with Domain- Specific

Reference Architectures," Annals of Software

Engineering, vol. 5, 1998, pp. 143 - 168.

[11] Atkinson, C., Bayer, J., Muthig, D.,

Component-Based Product Line

Development: The KobrA Approach,

Proceedings, 1st International Software

Product Line Conference,2000, pp.289-309.

[12] Bayer, J.; Flege, O.; Knauber, P.; Laqua, R.;

Muthig, D.; Schmid, K.; Widen, T.; and

DeBaud, M.;, (1999) PuLSE: A Methodology

to Develop Software Product Lines,

Proceedigns of the 5
th

 ACM SIGSOFT

Symposium on Software Reusability, pp. 122-

131.

[13] Clements, P. C. (2001). “On the importance of

product line scope,” in: Proceedings of the 4th

International Workshop on Software Product

Family Engineering, pp. 69-77.

[14] Clements, P. C., Jones, L. G. Northrop, L. M.

& McGregor, J. D. (2005). “Project

management in a software product line

organization,” IEEE Software, vol. 22, no. 5,

pp. 54-62.

[15] Garlan, D. and Perry, D. (1995). “Introduction

to the special issue on software architecture,”

IEEE Transactions on Software Engineering,

vol. 21, no. 4, pp. 269-274.

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 295
Volume 2, Issue 2, April 2011

[16] Pronk, B. J., (200) “An interface-based

platform approach,” in: Proceedings of the 1st

Software Product Lines Conference, pp. 331-

352.

[17] Jazayeri, M., Ran, A. and Van der Linden, F.

(2000). Software Architecture for Product

Families: Principles and Practice, Addison

Wesley.

[18] Mika, K. and Tommi, M. (2004). “Assessing

systems adaptability to a product family,”

Journal of Systems Architecture, pp. 383-392.

[19] Wiley, D., Ed. (2000). The Instructional Use

of Learning Objects, (Available online at

http://www.reusability.org/read/) [Accessed

November 14, 2008]

[20] McGreal, R., Ed., 2004, Online Education

Using Learning Objects. Open and Distance

Learning Series, Routledge/Falmer, London.

[21] Cisco. (2003). Reusable Learning Objects

Authoring Guidelines: How to Build Modules,

Lessons and Topics, Cisco Systems, Inc., San

Jose, California.

[22] F.v.d. Linden, K. Schmid, and E. Rommes,

Software Product Lines in Action: The Best

Industrial Practice in Product Line

Engineering. 2007: Springer.

[23] J. Bosch, Design & Use of Software

Architectures: Adopting and evolving a

product-line approach. 2000: Addison-

Wesley.

[24] Zualkernan, I. A. (2006). “Stability Analysis

of Learning Objects in Engineering

Education,” in Proceedings of the 2
nd

International Conference on Engineering

Education, Kuwait.

[25] Zualkernan, I. A. (2008). Eighteen Design

Decisions, Computer Science and Engineering

Department, Technical Report # TR-02-08,

American University of Sharjah.

[26] M. Korhonen and T. Mikkonen, Assessing

Systems Adaptability to a Product Family,

Journal of Systems Architecture, No. 50, pp.

383-392, 2004.

[27] Brand, S. (1994). How Buildings Learn: What

Happens After They’re Built. New York:

Penguin Books.

[28] Gibbons, S., Nelson, J. and Richards, R.,

2000, “The nature and origin of instructional

objects,” In D. A. Wiley (Ed.), The

Instructional Use of Learning Objects,

(Available online at

http://www.reusability.org/read/) [Accessed

November 14, 2006]

[29] IMS-SCORM, 2005, IMS Content Packaging

Use Case Descriptions, Version 1.2,

(Available at

http://www.imsglobal.org/content/packaging/c

pv1p2pd/imscp_usecv1p2pd.html) [Accessed

November 14, 2008]

[30] IMS-LD, 2008, IMS Learning Design

Specification, (Available at

http://www.imsglobal.org/learningdesign/) [

Accessed November 14, 2010].

[31] Gomez-Perez A., Fernandez-Lopez, M. and

Corcho, O. (2004). Ontological Engineering,

Springer, London.

[32] Bloom, B. S., Ed. (1956). Taxonomy of

Educational Objectives: Book 1, Cognitive

domain. New York: Longman.

[33] Pyzdek, T. (2003). The Six Sigma Handbook,

McGraw-Hill, New York.

[34] George, M. L., Rowlands, D., Price, M. and

Mazey, J. (2005). The Lean Six Sigma Pocket

ToolBook, McGraw-Hill.

http://www.imsglobal.org/content/packaging/cpv1p2pd/imscp_usecv1p2pd.html
http://www.imsglobal.org/content/packaging/cpv1p2pd/imscp_usecv1p2pd.html
http://www.imsglobal.org/learningdesign/

